Theredient cylinder separator relies upon centrifugal force. The speed of the cylinder holds the particle in the indent, lifting it out of the mass until the indent is inverted to the point where gravity causes the particle to fall out of the indent. The particle is then caught by a trough. The amount of product which can be length separated depends on the degree of separation that is required. A screw conveyor then discharges the desired "cut point" thereby catching the small particles as they drop out of the indents but not permitting the longer particles to drop through. To make adjustments on the "cut point" of the separator, a trough tilt adjustment is used which allows you to define the degree of separation that is required. A screw conveyor then discharges the short lifted material separate from the tailed long material. The amount of product which can be length separated depends on the number of pockets coming in contact with the product.

The indented cylinder separator relies upon centrifugal force. The speed of the cylinder holds the particle in the indent, lifting it out of the mass until the indent is inverted to the point where gravity causes the particle to fall out of the indent. The particle is then caught by a trough. The amount of product which can be length separated depends on the degree of separation that is required. A screw conveyor then discharges the desired "cut point" thereby catching the small particles as they drop out of the indents but not permitting the longer particles to drop through. To make adjustments on the "cut point" of the separator, a trough tilt adjustment is used which allows you to define the degree of separation that is required. A screw conveyor then discharges the short lifted material separate from the tailed long material. The amount of product which can be length separated depends on the number of pockets coming in contact with the product.

The segmented cylinder design increases clean-out capabilities and minimizes cylinder removal downtime and maintenance.

The No. 3SI variable speed HTD drive system consists of a spring loaded V belt sheave on the motor. The rotation speed of the cylinder may be changed by the external cylinder speed adjustment wheel which slides the motor base changing the input speed to the worm gear reducer which changes the speed of cylinder.

The screw trough adjustment provides extremely close settings of the separation edge. The liftings trough can be released from the settings to allow for quick clean-out. The Patented Segmented Cylinder consist of three equal segments. These segments are joined together by three solid bars which are attached to the ends of the cylinder assembly. The folded edges of the shell segments nest over these bars and are clamped in place with a clamping channel which provides a secure leakproof joint. The segmented cylinder design increases clean-out capabilities and minimizes cylinder removal downtime and maintenance.

The Adjustable Retarder system improves separation results by controlling the amount of product maintained in the cylinder. The adjustable retarder can be positioned out of the product flow when it is not required.

Complete laboratory service is at your disposal. Carter Day's facility enables us to test your unique product. Sample in laboratory or full size equipment and determine the proper machine for your application. We invite you to participate in tests conducted at our facility in Minneapolis, Minnesota, USA.
D ISC CYLINDER SEPARATOR

CARTER DAY INTERNATIONAL

CARTER DAY INTERNATIONAL

The Disc Separator consists of a series of discs mounted on a horizontal shaft. The discs, each with hundreds of undercut pockets, revolve through the mass of material lifting the shorter material into a discharge trough at the front of the machine. While the disc blades convey the longer material (and are designed to lift small, irregular shaped material) opened or closed to allow the reprocessing of wheat if needed.

D isc pockets are made in three basic shapes:
The "V" pockets are derived from Vetch seed. It has a round bottom and a square horizontal 'leading edge' and is designed up and down for small round grains and small wheat. It is a "V" pocket but the pockets have straight lifting edges and a curved top edge. This type of pocket is designed to lift small, irregular shaped material.

The "RI" pockets are derived from the rice cleaning process. It is a "V" pocket but the pockets have straight lifting edges and a curved top edge. This type of pocket is designed to lift small, irregular shaped material.

The "RI" pockets are derived from the rice cleaning process. They are designed to lift small, irregular shaped material.

The "RI" pockets are derived from the rice cleaning process. They are designed to lift small, irregular shaped material.

NOTE: Both the "V" and "RI" pockets are made only in small sizes; from 2.5 millimeters (0.364") to 17 millimeters (0.670"). The latter on the "V" and "RI" discs are always followed by a No. 4 V.4 1/2.

Alphabetically designated pockets that do not have a number following a: "A", "R", "M" or "L" are square shaped in rectangular. Generally these square pockets have two basic functions. One is to rapidly lift the short particles to reduce the mass in the machine and its increase capacity. The second is to provide a dividing or splitting separation where each pocket produces a discharge of separated sizes.

The Disc Separator consist of a series of discs mounted on a horizontal shaft. The discs, each with hundreds of undercut pockets, revolve through the mass of material lifting the shorter material into a discharge trough at the front of the machine. While the disc blades convey the longer material (and are designed to lift small, irregular shaped material) opened or closed to allow the reprocessing of wheat if needed.

Disc pockets are made in three basic shapes:
The "V" pockets are derived from Vetch seed. It has a round bottom and a square horizontal 'leading edge' and is designed up and down for small round grains and small wheat. It is a "V" pocket but the pockets have straight lifting edges and a curved top edge. This type of pocket is designed to lift small, irregular shaped material.

The "RI" pockets are derived from the rice cleaning process. It is a "V" pocket but the pockets have straight lifting edges and a curved top edge. This type of pocket is designed to lift small, irregular shaped material.

The "RI" pockets are derived from the rice cleaning process. They are designed to lift small, irregular shaped material.

NOTE: Both the "V" and "RI" pockets are made only in small sizes; from 2.5 millimeters (0.364") to 17 millimeters (0.670"). The latter on the "V" and "RI" discs are always followed by a No. 4 V.4 1/2.

Alphabetically designated pockets that do not have a number following a: "A", "R", "M" or "L" are square shaped in rectangular. Generally these square pockets have two basic functions. One is to rapidly lift the short particles to reduce the mass in the machine and its increase capacity. The second is to provide a dividing or splitting separation where each pocket produces a discharge of separated sizes.

BOTH "V" AND "RI" POCKETS ARE MADE ONLY IN SMALL SIZES. THE "V" POCKET IS DESIGNED TO LIFT SMALL, IRREGULAR SHAPED MATERIAL. THE "RI" POCKET IS DESIGNED TO LIFT SMALL, IRREGULAR SHAPED MATERIAL.

The Disc Separator consist of a series of discs mounted on a horizontal shaft. The discs, each with hundreds of undercut pockets, revolve through the mass of material lifting the shorter material into a discharge trough at the front of the machine. While the disc blades convey the longer material (and are designed to lift small, irregular shaped material) opened or closed to allow the reprocessing of wheat if needed.

Disc pockets are made in three basic shapes:
The "V" pockets are derived from Vetch seed. It has a round bottom and a square horizontal 'leading edge' and is designed up and down for small round grains and small wheat. It is a "V" pocket but the pockets have straight lifting edges and a curved top edge. This type of pocket is designed to lift small, irregular shaped material.

The "RI" pockets are derived from the rice cleaning process. It is a "V" pocket but the pockets have straight lifting edges and a curved top edge. This type of pocket is designed to lift small, irregular shaped material.

The "RI" pockets are derived from the rice cleaning process. They are designed to lift small, irregular shaped material.

NOTE: Both the "V" and "RI" pockets are made only in small sizes; from 2.5 millimeters (0.364") to 17 millimeters (0.670"). The latter on the "V" and "RI" discs are always followed by a No. 4 V.4 1/2.

Alphabetically designated pockets that do not have a number following a: "A", "R", "M" or "L" are square shaped in rectangular. Generally these square pockets have two basic functions. One is to rapidly lift the short particles to reduce the mass in the machine and its increase capacity. The second is to provide a dividing or splitting separation where each pocket produces a discharge of separated sizes.

BOTH "V" AND "RI" POCKETS ARE MADE ONLY IN SMALL SIZES. THE "V" POCKET IS DESIGNED TO LIFT SMALL, IRREGULAR SHAPED MATERIAL. THE "RI" POCKET IS DESIGNED TO LIFT SMALL, IRREGULAR SHAPED MATERIAL.

The Disc Separator consist of a series of discs mounted on a horizontal shaft. The discs, each with hundreds of undercut pockets, revolve through the mass of material lifting the shorter material into a discharge trough at the front of the machine. While the disc blades convey the longer material (and are designed to lift small, irregular shaped material) opened or closed to allow the reprocessing of wheat if needed.

Disc pockets are made in three basic shapes:
The "V" pockets are derived from Vetch seed. It has a round bottom and a square horizontal 'leading edge' and is designed up and down for small round grains and small wheat. It is a "V" pocket but the pockets have straight lifting edges and a curved top edge. This type of pocket is designed to lift small, irregular shaped material.

The "RI" pockets are derived from the rice cleaning process. It is a "V" pocket but the pockets have straight lifting edges and a curved top edge. This type of pocket is designed to lift small, irregular shaped material.

The "RI" pockets are derived from the rice cleaning process. They are designed to lift small, irregular shaped material.

NOTE: Both the "V" and "RI" pockets are made only in small sizes; from 2.5 millimeters (0.364") to 17 millimeters (0.670"). The latter on the "V" and "RI" discs are always followed by a No. 4 V.4 1/2.

Alphabetically designated pockets that do not have a number following a: "A", "R", "M" or "L" are square shaped in rectangular. Generally these square pockets have two basic functions. One is to rapidly lift the short particles to reduce the mass in the machine and its increase capacity. The second is to provide a dividing or splitting separation where each pocket produces a discharge of separated sizes.

BOTH "V" AND "RI" POCKETS ARE MADE ONLY IN SMALL SIZES. THE "V" POCKET IS DESIGNED TO LIFT SMALL, IRREGULAR SHAPED MATERIAL. THE "RI" POCKET IS DESIGNED TO LIFT SMALL, IRREGULAR SHAPED MATERIAL.